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Abstract
We investigate the relation between the diagonal (σxx ) and off-diagonal (σxy ) components of the
conductivity tensor in the quantum Hall system. We calculate the conductivity components for a
short-range impurity potential using the linear response theory, employing an approximation
that simply replaces the self-energy by a constant value −ih̄/(2τ ) with τ the scattering time.
The approximation is equivalent to assuming that the broadening of a Landau level due to
disorder is represented by a Lorentzian with the width � = h̄/(2τ ). Analytic formulae are
obtained for both σxx and σxy within the framework of this simple approximation at low
temperatures. By examining the leading terms in σxx and σxy , we find a proportional relation
between dσxy/dB and Bσ 2

xx . The relation, after slight modification to account for the
long-range nature of the impurity potential, is shown to be in quantitative agreement with
experimental results obtained in the GaAs/AlGaAs two-dimensional electron system at the low
magnetic field regime where spin splitting is negligibly small.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The experimental finding by Chang and Tsui [1] of the striking
similarity between the longitudinal resistivity ρxx and the
derivative of the Hall resistivity with respect to the electron
density ne, dρxy/dne, in the quantum Hall regime has attracted
considerable interest and has since been a subject of a number
of experimental [2–8] and theoretical [9–11] studies. Using a
low-carrier-density (ne � 1 × 10−15 m−2) high mobility (μ �
300 m2 V−1 s−1) two-dimensional electron system (2DES) in
GaAs/AlGaAs, Stormer et al [4] showed that all features in ρxx

(including overshooting flanks around quantum Hall states) are
faithfully reproduced by the derivative of ρxy with respect to

the magnetic field B in the form

B
dρxy

dB
� βρxx , (1)

where β is a sample-dependent constant value (typically
between 20 and 40). Note, as pointed out in [1], that the
differentiation by B and that by ne are basically equivalent to
each other, −B(d/dB) = ne(d/dne), if the relevant variable in
the problem is the filling factor ν = neh/eB and not ne or B
separately.

The origin of the intriguing empirical relation equation (1)
remains largely enigmatic. A possible explanation is given
by Simon and Halperin [10], who ascribed the relation to
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the microscopic inhomogeneity in the electron density ne

inevitably present in real 2DES samples. Noting that the
macroscopic value of ρxx measured in experiments is mainly
determined by the fluctuation in the local Hall resistivity
ρxy(�r) resulting from the inhomogeneity in ne rather than
by the local longitudinal resistivity ρxx (�r), their theory leads
to equation (1) for not too low temperatures if disorder
is taken into consideration on multiple length scales. In
a recent experiment by Pan et al [8] using an ultrahigh
mobility (μ = 3100 m2 V−1 s−1) 2DES at an extremely
low temperature (∼6 mK), an experimentally measured value
of ρxx was interpreted [8, 11] as essentially reflecting the
difference in ρxy(�r) between the voltage probes placed under
slightly different (∼0.5%) electron density ne, and accordingly
as virtually irrelevant to the local resistivity ρxx (�r). Note,
however, that the van der Pauw geometry used in their study
is not necessarily an ideal set-up for the measurement of the
resistivity.

In the present paper, we explicitly calculate the
diagonal (σxx ) and the off-diagonal (σxy ) components of the
conductivity tensor in the quantum Hall system by employing
the linear response theory. Although there already exist a
number of sophisticated theories devoted to the calculation of
σxx and σxy in the quantum Hall system (see, e.g., [12–15]),
they have not been applied, to the knowledge of the present
authors, to the interpretation of the relation between the
two components of the conductivity tensor exemplified by
equation (1). We take the effect of disorder into account by
simply assuming the Lorentzian broadening of the Landau
levels with the width � independent of B; this can readily be
done by substituting a constant value −i� for the self-energy
in the Green’s function. Although this appears to be somewhat
an oversimplified approximation, the Lorentzian with the B-
independent width is suggested by a number of experiments
to be a function that describes quite well the broadening
of Landau levels due to disorder [16–19]. In contrast, the
well-known self-consistent Born approximation [12] yields a
semi-elliptical broadening, which is by far a less accurate
representation of the experimentally observed Landau levels.
A great advantage of the simple approximation employed in the
present study is that it allows us to deduce analytical formulae
for both σxx and σxy for low enough temperatures kBT � εF

with εF the Fermi energy. The analytic formulae, in turn,
provide us with a transparent way to examine the underlying
relation between the two components. By picking out the most
significant terms at high magnetic fields in the formulae, we
find the relation

dσxy

dB
� λBσ 2

xx , (2)

with the coefficient λ determined by scattering parameters
and εF (see equation (45) below for details). The relation is
analogous to equation (1) but with a notable difference that σxx

enters the equation in squared form. Note that equation (1) can
be rewritten as

B
dσxy

dB
� βσxx (3)

by using the approximate relations for not too small magnetic
fields, ρxy ≈ 1/σxy and ρxx ≈ σxx/σ

2
xy . In contrast to the

previous study [10], we have not introduced inhomogeneity in
ne in our calculation.

The relation between σxx and σxy found in the present
study is compared with experimental results obtained in a
GaAs/AlGaAs 2DES using the Hall bar geometry, a geometry
well suited to the measurement of the resistivity. Care should
be taken in the comparison, since our theoretical calculation
is based on the short-range impurity potential, while the
dominant scattering in a GaAs/AlGaAs 2DES is known to
be of long-range. We find that equation (53) below obtained
by modifying equation (2) to accommodate the long-range
potential describes the experimental results remarkably well
for the low magnetic field range where the spin splitting, the
localization, the formation of edge states and the electron–
electron interaction can be neglected.

This paper is organized as follows. In section 2, we
introduce the Green’s function to be employed in the later
calculations. Components of the conductivity tensor are
calculated in section 3, which are shown in the appendix to
approach the semiclassical formulae asymptotically for B →
0. The relation between σxx and σxy is examined in section 4
and is compared with experimental results in section 5 after
modification to account for the long-range nature of the
impurity potential. The validity of our approximation and
the magnetic field range for our approximation to be accurate
are discussed in section 6, followed by concluding remarks in
section 7.

2. Impurity scattering in the quantum Hall system

We consider a 2DES in a magnetic field perpendicular to the
2D plane. The Hamiltonian of the system is given by

HQH = H0 + Vimp, (4)

H0 = 1

2m∗ ( �p + e �A)2, (5)

where �p denotes the momentum operator, −e is the charge
of an electron, �A is the vector potential of the magnetic
field (0, 0, B) and Vimp represents the impurity potential. We
neglect spins for simplicity. The term H0 in the Hamiltonian
gives the Landau levels. The eigenfunction of H0 in the Landau
gauge is given by

φkN (x, y) = 1√
L

eikxχN (y − yk), (6)

where L is the length of the system, χN denotes the
eigenfunction of the harmonic oscillator in the N th Landau
level whose energy is given by EN = h̄ωc(N + 1/2) with
ωc = e|B|/m∗ the cyclotron frequency, and yk = −k2 is the
guiding center with  = √

h̄/e|B| the magnetic length.
We consider a short-range potential of the form

Vimp(�r) =
∑

i

Viδ(�r − �ri). (7)

Owing to the impurity potential, Landau levels acquire width,
which are otherwise delta functions placed at ε = EN (N =
0, 1, 2, . . .). The resulting density of states (DOS), or the
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lineshape of the impurity-broadened Landau levels, has been
calculated for various types of impurity potential. For a white-
noise potential (impurities with constant strength Vi distributed
at random positions �ri ), the broadening was shown to be well
described by a Gaussian lineshape [20–22]. Calculations were
also done assuming a distribution P(Vi ) in the strength of the
impurity scattering Vi [21–27]. Brezin et al [21] and Benedict
et al [25] showed that a Lorentzian distribution of P(Vi ) results
in DOS described by a Lorentzian lineshape. Lorentzian
broadening of the Landau levels is consistent with experiments
on the tunneling into a 2DES [16, 19] or measurement of the
magnetization in a 2DES [17, 18].

In the present paper, we start by assuming the Lorentzian
DOS

D(ε) = 1

2π2

∞∑

N=0

1

π

�

(ε − EN )2 + �2
. (8)

As will be shown, this simple approximation allows us to
deduce analytic formulae of the conductivity tensor, which
proves to be essential for the later analysis of the relation
between the components of the conductivity tensor.

The simple DOS equation (8) implies analogous
simplicity in the electron Green’s function. For a sufficiently
short-ranged impurity potential, the Green’s function can be
written in the diagonalized form as

G N (ε)δN,N ′δk,k′ =
〈
N, k

∣∣∣∣
1

ε − HQH

∣∣∣∣N ′, k ′
〉

= δN,N ′δk,k′

ε − EN − �N (ε)
, (9)

where |N, k〉 represents the eigenstate of the unperturbed
Hamiltonian given by equation (6) and �N (ε) denotes the
self-energy resulting from Vimp. The DOS is related to the
imaginary part of the electron Green’s function (9) by

D(ε) = − 1

2π2

∑

N

ρN (ε), (10)

with ρN (ε) introduced as

ρN (ε) = 1

π
Im G N (ε + i0). (11)

It is easy to see that equation (10) reproduces equation (8) if
the self-energy �N (ε) in equation (9) is replaced by a constant
value −i� = −ih̄/(2τ ), yielding

G N (ε + i0) = 1

ε − EN + i�
. (12)

We exploit the simple Green’s function equation (12) in the
following calculations.

3. Conductivity tensor

We introduce the particle-current operator �j of the form

�j = 1

m∗ ( �p + e �A). (13)

Figure 1. The diagram for the current–current correlation function.

The conductivity tensor σαβ (with α and β representing either
of x or y) of the 2DES is given by the Kubo formula

σαβ(ω) = Re

[
1

iω
(Kαβ(ω + i0) − Kαβ(0))

]
, (14)

where Kαβ represents the thermal Green’s function corre-
sponding to the current–current correlation function:

Kαβ(iωn) = − e2

L2h̄

∫ h̄/kB T

0
dτ eiωnτ 〈Tτ jα(τ ) jβ(0)〉, (15)

with L the system size, Tτ the chronological operator and ωn =
2nπkBT/h̄ for an integer n. The bracket 〈· · ·〉 here denotes
the ensemble average. In the calculation of the conductivity
tensor (14), we consider only the loop diagram shown in
figure 1 and neglect the correction from the current vertex part.
The correlation function Kαβ is then written as

Kαβ(iωn) = −kBT e2

L2

∑

ωm

∑

N,k,N ′ ,k′
〈N, k| jα|N ′, k ′〉〈N ′, k ′| jβ

× |N, k〉G N ′ (ih̄ωm + ih̄ωn + εF)G N (ih̄ωm + εF), (16)

where the electron Green’s function G N is given by
equation (12) and the matrix elements of the particle current
are

〈N, k| jx |N ′, k ′〉

=
(

− h̄

m

√
N + 1

2
δN ′,N+1 − h̄

m

√
N

2
δN ′,N−1

)
δk,k′ ,

〈N, k| jy |N ′, k ′〉

=
(

−i
h̄

m

√
N + 1

2
δN ′,N+1 + i

h̄

m

√
N

2
δN ′,N−1

)
δk,k′ .

(17)

Performing analytical continuation of iωn to ω and taking
the limit ω → 0 + i0, we obtain the dc parts of the diagonal
and off-diagonal components in the conductivity tensor in the
forms

σxx (T, εF) = e2

2h̄
(h̄ωc)

2
∫ ∞

−∞
dε

(
−∂ f (ε)

∂ε

)

×
∞∑

N=0

(N + 1)ρN (ε)ρN+1(ε), (18)

σxy(T, εF) = − e2

2π h̄
(h̄ωc)

2
∞∑

N=0

∫ ∞

−∞
dε f (ε)(N + 1)

×
(

ρN (ε)
∂G N+1(ε + i0)

∂ε
− ρN+1(ε)

∂G N (ε + i0)

∂ε

)
,

(19)
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where f (ε) = 1/{exp[(ε − εF)/(kBT )] + 1} is the Fermi
distribution function. Equations (18) and (19) are basically
equivalent to equations (50) and (51) in [28] by Jonson and
Girvin, except that the self-energy in the Green’s function is
replaced by a constant value in our case.

We can calculate the components of the conductivity
tensor equations (18) and (19) further using the electron
Green’s function (12). We first examine the diagonal
component σxx . For kBT � εF, we can approximate the
derivative of the Fermi distribution function by the delta
function −∂ f (ε)/∂ε � δ(ε−εF). Thus equation (18) becomes

σxx (εF) � e2

2h̄
(h̄ωc)

2
∞∑

N=0

(N + 1)ρN (εF)ρN+1(εF). (20)

Introducing dimensionless parameters

XF = εF

h̄ωc
− 1

2
, (21)

and

γ = �

h̄ωc
, (22)

we can rewrite equation (20) as

σxx (εF) = e2

2π2h̄

γ 2

1 + 4γ 2

∞∑

N=0

2XF + 1

(XF − N)2 + γ 2
. (23)

To evaluate the summation over N in equation (23), we use the
Poisson sum formula

∞∑

N=−∞

1

N − XF ∓ iγ
= ±2π i

∞∑

ν=−∞
θ(∓ν)e−i2πνXF−2π |ν|γ

= π[− sin(2π XF) ± i sinh(2πγ )]
cosh(2πγ ) − cos(2π XF)

, (24)

where θ(ξ) is the unit step function. Using equation (24), we
derive from equation (23)

σxx (εF) = e2

h

2γ

1 + 4γ 2

(XF + 1/2) sinh(2πγ )

cosh(2πγ ) − cos(2π XF)

= e2

h
σ̃xx (XF, γ ), (25)

where we approximated
∑∞

N=0 by
∑∞

N=−∞, noting that terms
with N < 0 are negligibly small at εF in the typical
situations εF � �. Equation (25) bears the same form as
equation (2.11) in [12] by Ando if we replace our XF and
γ with X ′/(h̄ωc) and X ′′/(h̄ωc), respectively. In the second
equality in equation (25), we introduced the notation σ̃αβ for
the conductivity σαβ normalized by e2/h.

Next we examine the off-diagonal component σxy of the
conductivity tensor. Introducing a variable of integration

X = ε

h̄ωc
− 1

2
, (26)

and performing the integration by parts, we rewrite
equation (19) as

σxy(T, εF) = − e2

2π h̄

∞∑

N=0

(N + 1)

×
∫ ∞

−∞
dX

(
−∂ f (h̄ωc(X + 1/2))

∂ X

)
L N (X), (27)

with

L N (X) ≡ (h̄ωc)
2
∫ X

−∞

[
ρN (h̄ωc(X ′ + 1

2 ))

× ∂G N+1(h̄ωc(X ′ + 1/2) + i0)

∂ X ′
− ρN+1(h̄ωc(X ′ + 1

2 ))

× ∂G N (h̄ωc(X ′ + 1/2) + i0)

∂ X ′

]
dX ′. (28)

For kBT � εF, we obtain

σxy(εF) = −e2

h

∞∑

N=0

(N + 1)L N (XF). (29)

Using equation (12) and performing the integration L(X) in
equation (28) up to XF, we obtain

σxy(εF) = − e2

2π2h̄

{
2γ 3

1 + 4γ 2

∞∑

N=0

[
1

2γ 2

(XF − N)

(XF − N)2 + γ 2

− 2N + 1

(XF − N)2 + γ 2

]
+

∞∑

N=0

[
arctan

(
XF − N

γ

)
+ π

2

]}
.

(30)

We can evaluate the summation over N in equation (30),
following a similar procedure as in the calculation from
equations (23)–(25). The first line on the right-hand side (rhs)
of equation (30) becomes

e2

h

1

cosh(2πγ ) − cos(2π XF)

[
−γ sin(2π XF)

+ 4γ 2(XF + 1/2)

1 + 4γ 2
sinh(2πγ )

]
, (31)

where we used equation (24), employing the approximation∑∞
N=0 → ∑∞

N=−∞ as before. Along the same lines, we can
accurately approximate the last term on the rhs of equation (30)
by

−e2

h

1

π

[ ∞∑

N=−∞
arctan

(
XF − N

γ

)
+ π

2

]
, (32)

noting that arctan((XF − N)/γ ) � π/2 for N < 0 since (XF −
N)/γ = [εF − (N + 1/2)h̄ωc]/� � 0 for εF � �. Using the
relation arctan((X−N)/γ ) = ∫

γ /[(X−N)2+γ 2]dX+const.
and equation (24), we can rewrite equation (32) further as

−e2

h

[ ∞∑

N=−∞

∫ XF

0

1

π

γ

(X − N)2 + γ 2
dX + 1

2

]

= −e2

h

[
1

π
arctan (coth(πγ ) tan(π XF))

+ Int(XF + 1
2 ) + 1

2

]
, (33)

with Int(ξ) representing the integer part of ξ . We finally arrive
at

σxy(εF) = e2

h

{
1

cosh(2πγ ) − cos(2π XF)

×
[

4γ 2(XF + 1/2)

1 + 4γ 2
sinh(2πγ ) − γ sin(2π XF)

]

4
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− 1

π
arctan(coth(πγ ) tan(π XF)) − Int

(
XF + 1

2

)
− 1

2

}

= e2

h
σ̃xy(XF, γ ). (34)

As far as we know, an explicit analytic formula for σxy has
never been reported thus far.

In figure 2, we show the diagonal σ̃xx and off-diagonal σ̃xy

components of the normalized conductivity tensor calculated
by equations (25) and (34) (or, equivalently, by equations (35)
and (36) below), respectively. The parameters are selected to
be typical values in a GaAs/AlGaAs 2DES: m∗ = 0.067m0

with m0 the bare electron mass, εF = 7.5 meV and � =
h̄/(2τ ) = 0.12 meV. The traces basically reproduce well-
known behavior of a 2DES in the magnetic field: the staircase
with plateaus at integer multiples of e2/h for σxy and peaks
at inter-plateau transition for σxx . The non-monotonic 1/B
dependence observed in σxy for B � 1 T (the depression
in −σxy that occurs in step with the peak in σxx ) is usually
not seen in the experimental traces for a high mobility
GaAs/AlGaAs 2DES, but can be seen in early experiments
on Si-MOSFET [29] and is likely to be related to the short-
range nature of the impurity potential. (See figure 4 below for
a comparison with the result in the long-range potential.)

For brevity and for convenience in later use, we rewrite
σ̃xx and σ̃xy in the concise formulae

σ̃xx (XF, γ ) = 2γ

1 + 4γ 2

(
XF + 1

2

)
Fsinh(XF, γ ) (35)

σ̃xy(XF, γ ) = −IFsinh(XF, γ ) − γ Fsin(XF, γ )

+ 4γ 2

1 + 4γ 2

(
XF + 1

2

)
Fsinh(XF, γ ), (36)

where we introduced the notations Fsin(XF, γ ), Fsinh(XF, γ )

and IFsinh(XF, γ ) defined as

Fsin(XF, γ ) = sin(2π XF)

cosh(2πγ ) − cos(2π XF)
,

Fsinh(XF, γ ) = sinh(2πγ )

cosh(2πγ ) − cos(2π XF)
,

IFsinh(XF, γ ) =
∫ XF

− 1
2

dX Fsinh(X, γ )

= 1

π
arctan(coth(πγ ) tan(π XF)) + Int

(
XF + 1

2

)
+ 1

2
.

(37)

Although it appears, at first glance, that the stepwise behavior
of σxy is reflecting only the first term in equation (36), the
second term is also playing its own share of roles by extending
the width of the plateau and thus making the slope of the inter-
plateau region much steeper than it would be were it not for the
term. The steepness of the slope is of paramount importance in
our theory that attempts to explain the behavior of dσxy/dB .

We note in passing that the DOS given by equation (8)
can also be rewritten, following the same procedure as in the
derivation of equation (35), as

D(ε) = D0Fsinh(X, γ ), (38)

where D0 = m∗/(2π h̄2) represents the DOS of a 2DES in
the absence of the magnetic field and X = ε/(h̄ωc) − 1/2 as

Figure 2. The diagonal (equation (35)) and the off-diagonal
(equation (36)) components of the conductivity tensor. The
horizontal axis is the inverse magnetic field.

defined earlier. Accordingly, the cumulative number of states
N(ε) below ε is

N(ε) =
∫ ε

0
D(ε′) dε′ = 1

2π2
IFsinh(X, γ ). (39)

We will show in the appendix that equations (35) and (36)
tend to the well-known semiclassical formulae for B → 0.

4. The relation between diagonal and off-diagonal
conductivities at high magnetic fields

We now move on to the main topic of the present paper, the
relation between σ̃xx and σ̃xy at high magnetic fields. Since
both XF and γ are functions of B , the derivative of the off-
diagonal component σ̃xy with respect to B is written as

dσ̃xy(XF, γ )

dB
= ∂σ̃xy(XF, γ )

∂ XF

dXF

dB
+ ∂σ̃xy(XF, γ )

∂γ

dγ

dB

= − 1

B

[(
XF + 1

2

)
∂σ̃xy(XF, γ )

∂ XF
+ γ

∂σ̃xy(XF, γ )

∂γ

]
.

(40)

Differentiation by XF and γ can be analytically done on
equation (36) and we obtain

B
dσ̃xy(XF, γ )

dB
=

(
XF + 1

2

)[
1 − 4γ 2

(1 + 4γ 2)2

− 1 + 8γ 2

1 + 4γ 2
2πγ coth(2πγ )

]
Fsinh(XF, γ )

+
(

XF + 1

2

)
1 + 8γ 2

1 + 4γ 2
2πγ Fsinh2(XF, γ )

−
[

1 − 4

1 + 4γ 2

(
XF + 1

2

)2]

× 2πγ 2Fsin(XF, γ )Fsinh(XF, γ ), (41)

or, with the aid of equation (35),

B
dσ̃xy(XF, γ )

dB
= 1

2γ

[
1 − 4γ 2

1 + 4γ 2
− 2πγ (1 + 8γ 2)coth(2πγ )

]

× σ̃xx (XF, γ ) + π

2γ

(1 + 8γ 2)(1 + 4γ 2)

XF + 1/2
σ̃ 2

xx (XF, γ )

5
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Figure 3. The plots of dσ̃xy/dB calculated by an unabridged
equation, equation (41) (thin solid red line, plotted in both (a)
and (b)), and by an approximated equation, equation (45), with σ̃xx

calculated by equation (35) (thick dashed green line in (a)). We also
plot dσ̃xy/dB(1) in equation (46), obtained by keeping only the first
term in equation (36), for comparison (dotted–dashed blue line in
(b)). The traces are separately plotted in (a) and/or (b) for clarity.

− π(1 + 4γ 2)

2 sinh(2πγ )

[
1 + 4γ 2

(XF + 1/2)2
− 4

]

× sin(2π XF)σ̃
2
xx (XF, γ ). (42)

We will pick out the dominant term at high magnetic fields
from the rhs of equation (42). Since γ = �/(h̄ωc) tends to
zero with the increase of the magnetic field, we expand the
coefficients in terms of γ for this purpose as

B
dσ̃xy(XF, γ )

dB
=

[
−

(
8 + 2π2

3

)
γ + O(γ 2)

]
σ̃xx (XF, γ )

+
[

π

2γ (XF + 1
2 )

+ O(γ )

]
σ̃ 2

xx (XF, γ )

−
{

1

γ

[
1

4(XF + 1
2 )

2
− 1

]
+ O(γ )

}

× sin(2π XF)σ̃
2
xx (XF, γ ). (43)

The diagonal component σ̃xx can be readily seen from
equation (35) to take peaks at XF = N (integer), namely when
the Fermi energy lies at the center of the N th Landau level,
with the peak height given by

σ̃xx (N, γ ) = 2γ

1 + 4γ 2

(
XF + 1

2

)
sinh(2πγ )

cosh(2πγ ) − 1

=
(

XF + 1

2

)[
2

π
+

(
− 8

π
+ 2π

3

)
γ 2 + O(γ 4)

]
, (44)

Figure 4. The diagonal (equation (49)) and the off-diagonal
(equation (50)) components of the conductivity tensor modified to
account for the long-range potential. The horizontal axis is the
inverse magnetic field.

and σ̃xx ∼ 0 away from the sharp peaks (see also figure 2).
From equations (43) and (44), and noting that sin(2π XF) ∼ 0
at XF ∼ N , we find that the second term in equation (43)
makes the dominant contribution, leading to our final result:

dσ̃xy(XF, γ )

dB
� πμ

h̄ωc

εF
σ̃ 2

xx (XF, γ ), (45)

or λ = (h/e2)π h̄eμ(m∗εF)
−1 in equation (2). Here we

made use of the mobility μ = eτ/m∗ = eh̄/(2m∗�). Plots
of dσ̃xy/dB calculated using equation (41) (solid red line)
and πμ(h̄ωc/εF)σ̃

2
xx with σ̃xx computed by equation (35)

(dashed green line) shown in figure 3 attest to the validity
of equation (45) for B � 1 T. The deviation seen at lower
magnetic fields is attributable to higher-order terms in γ

neglected in equation (45). In figure 3, we used the same
parameter values as in figure 2.

It is interesting to point out that we obtain the relation
dσxy/dB ∝ σxx instead of equation (45) if we keep only the
first term in equation (36):

dσ̃xy(XF, γ )

dB

(1)

= 1

B

[(
XF + 1

2

)
Fsinh(XF, γ )

− γ Fsin(XF, γ )

]
� μσ̃xx , (46)

which is not legitimate as discussed below equation (37) in
section 3. In fact, the peaks calculated by equation (46) exhibit
much larger width and smaller (roughly half) height compared
with those calculated by equation (41), as displayed in figure 3.

5. Comparison with experimental results

5.1. Modification for a long-range potential

In this section, we make an attempt to compare the relation
between σ̃xx and σ̃xy deduced in section 4 to the experimental
results obtained in a GaAs/AlGaAs 2DES. It is well known
that the main source of scattering in a GaAs/AlGaAs 2DES is
the ionized donors. The donors are set back from the 2DES

6
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plane by a spacer layer with the thickness typically a few tens
of nanometers. Therefore, the scattering in a GaAs/AlGaAs
2DES should be described by a long-range impurity potential.
Since a short-range potential is assumed in our theory, slight
modification is necessary to implement the comparison. This
is done by following the prescription given in [30].

First we observe that the off-diagonal component
equation (36) can be rewritten in the form presented in [14],
σxy = −e[∂ N(εF)/∂ B] − ωcτσxx , which in the normalized
form is

σ̃xy = −h

e

∂ N(εF)

∂ B
− 1

2γ
σ̃xx . (47)

The equivalence of equation (47) to (36) can readily be verified
by performing the differentiation by B on N(εF) given by
equation (39):
h

e

∂ N(εF)

∂ B
= IFsinh(XF, γ ) + γ Fsin(XF, γ )

− (XF + 1
2 )Fsinh(XF, γ ). (48)

In a long-range potential, it is important to recall that
the scattering is characterized by two distinct scattering times,
namely the quantum scattering time τq = h̄/(2�) that
describes the impurity broadening of the Landau levels and
the momentum relaxation time τm = σ0m∗/(nee2) related to
the conductivity at B = 0. The latter time is typically 10
times larger than the former in a GaAs/AlGaAs 2DES, while
the relaxation times are simply τq = τm = τ for short-range
scatterers. Coleridge et al [30] suggested an appropriate way of
replacing τ by either τq or τm, with which the resultant σxx and
σxy describe the conductivities under the long-range potential
quite well. The method, in our notation, is to replace γ only
in the prefactor of equation (35) by γm = 1/(2ωcτm), leaving
γ = γq = �/(h̄ωc) = 1/(2ωcτq) in Fsinh(X, γ ) intact:

σ̃ LR
xx (XF, γq, γm) = 2γm

1 + 4γ 2
m

(
XF + 1

2

)
Fsinh(XF, γq).

(49)
The Hall conductivity is obtained by substituting γm and σ̃ LR

xx
into the second term of equation (47) as

σ̃ LR
xy (XF, γq, γm) = −h

e

∂ N(εF)

∂ B

∣∣∣∣
γ=γq

− 1

2γm
σ̃ LR

xx

= −IFsinh(XF, γq) − γqFsin(XF, γq) + 2γmσ̃ LR
xx . (50)

With these substitutions, the derivative of σ̃ LR
xy by B is

dσ̃ LR
xy (XF, γq, γm)

dB
= η1(XF, γq) + η2(XF, γq)

+ η3(XF, γq, γm) (51)

with

η1(XF, γq) = 1

B

[(
XF + 1

2

)
Fsinh(XF, γq)

− γqFsin(XF, γq)

]
,

η2(XF, γq) = 1

B

{(
XF + 1

2

)
2πγqFsinh(XF, γq)

× [Fsinh(XF, γq) − coth(2πγq)] + γqFsin(XF, γq)

−2πγ 2
q Fsin(XF, γq)Fsinh(XF, γq)

}
,

Figure 5. The plots of dσ̃ LR
xy /dB without approximation,

equation (51) (thin solid red line), and dσ̃ LR
xy /dB approximated by

equation (52) with σ̃ LR
xx calculated by equation (49) (thick dashed

green line).

and

η3(XF, γq, γm) = −2γm

B
σ̃ LR

xx (XF, γq, γm)

×
{

2πγqcoth(2πγq) + 1 + 2

1 + 4γ 2
m

− 2π

× [(
XF + 1

2

)
Fsin(XF, γ ) + γqFsinh(XF, γq)

]}
,

where the terms η1, η2 and η3 are derived from the first,
the second and the third term in equation (50), respectively.
Accordingly, the dominant term at high magnetic field changes
from equation (45) to

dσ̃ LR
xy (XF, γq, γm)

dB
� π

μ2
m

μq

h̄ωc

εF
[σ̃ LR

xx (XF, γq, γm)]2, (52)

(λ = (h/e2)π h̄e(μ2
m/μq)(m∗εF)

−1 in equation (2)), where
μq = eτq/m∗ and μm = eτm/m∗ are mobilities corresponding
to τq and τm, respectively.

In figure 4, we show the longitudinal and the Hall
conductivities calculated by equations (49) and (50) with
parameters εF = 7.5 meV, μq = 7.1 m2 V−1 s−1

(corresponding to � = 0.12 meV) and μm = 78 m2 V−1 s−1.
The parameters are taken from our experiment to be presented
below. The diagonal component σxx has become much smaller
than in figure 2 (note the ten times magnification in figure 4), in
accordance with experiments in a GaAs/AlGaAs 2DES. Note
that the non-monotonic behavior of σxy observed in figure 2 has
vanished in figure 4. The high accuracy of the approximation
given by equation (52) at high enough magnetic fields (B �
1 T) is demonstrated in figure 5.

Although equation (52) as well as equation (45) is
intended for use in high magnetic fields, stringent comparison
with experimental results is possible only in a rather low
magnetic field range (B � 0.5 T) for a couple of reasons
to be discussed in section 6. Above all, we neglected the
spin of the electrons altogether in the theory. In principle,
the spin can be included in the theory by adding σgμB B
to EN with σ = ±1/2 representing the spin and μB the

7
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Bohr magneton. Difficulty arises, however, because of the
dependence of the g factor on the magnetic field owing to
the exchange interaction [31]: the g factor experiences strong
enhancement at the magnetic field where the Fermi energy
lies between the Zeeman gap (exchange enhancement), which
defies simple analytical treatment. If we limit ourselves to
B � 0.5 T, spin splitting can be completely neglected because
of the small (bare) g factor g = −0.44 in GaAs. In this low
magnetic field range, the approximation in equation (52) that
retains only the leading term in γ turns out to be insufficient,
as demonstrated in figure 6. The approximation is improved
by keeping the terms deriving from the first two terms on the
rhs of equation (50), η1 and η2, except for the term including
Fsin(XF, γ ) (the third term η3 can safely be neglected since
γm � γq):

dσ̃ LR
xy (XF, γq, γm)

dB
� π

μ2
m

μq

h̄ωc

εF
[σ̃ LR

xx (XF, γq, γm)]2

+ μm

[
1 − π

μq B
coth

(
π

μq B

)]
σ̃ LR

xx (XF, γq, γm). (53)

In figure 6, we plot dσ̃ LR
xy (XF, γ )/dB without approximation,

equation (51), along with approximated traces, equations (52)
and (53), calculated using σ̃ LR

xx (XF, γ ) in equation (49).
Deviation of equation (52) from the exact result becomes
evident below ∼0.5 T, while equation (53) reproduces the trace
almost indistinguishably from that of the exact calculation in
the magnetic field range shown in figure 6.

5.2. Relation between experimentally observed longitudinal
and Hall conductivities

Let us now turn to our experimental data. We prepared a
GaAs/AlGaAs 2DES sample with μm = 77 m2 V−1 s−1 and
ne = 2.1 × 1015 m−2, hence εF = 7.5 meV, shaped in a
Hall bar geometry by photolithography. The quantum mobility
μq = 7.1 m2 V−1 s−1 was determined from the damping of the
amplitudes �ρSdH of the Shubnikov–de Haas (SdH) oscillation
at low magnetic fields, �ρSdH(B)/ρ0 = C exp[−π/(μq B)]
with ρ0 the resistivity at B = 0 [32]. It was pointed
out in [32] that the prefactor C equals 4 in a homogeneous
2DES and the deviation from the value is attributable to the
inhomogeneity. We have verified that the SdH amplitudes in
our sample were described by the above equation with C = 4
reasonably well, confirming that inhomogeneity is minimal
in our sample. (Note, however, that small inhomogeneity
is inevitably present in a 2DES grown by molecular beam
epitaxy, as will be discussed below.) Measurements were
done in a dilution refrigerator equipped with a superconducting
magnet at the base temperature (∼15 mK), a temperature
low enough for the approximation kBT � εF to be valid.
The standard low-frequency (13 Hz) ac lock-in technique was
employed for the resistivity measurement with a low excitation
current (10 nA for B � 1 T and 0.5 nA for higher magnetic
fields) to prevent electron heating. For the magnetic field
sweep, we adopted very slow sweep rates (0.01 T min−1

for B � 1 T and 0.1 T min−1 for higher magnetic fields),
which, combined with a high data acquisition rate (∼4 data
points s−1), allow us to acquire data points dense enough

Figure 6. The plots of dσ̃ LR
xy /dB without approximation,

equation (51) (thin solid red line, plotted in both (a) and (b)), and
dσ̃ LR

xy /dB approximated by equation (53) (thick dashed green line
in (a)) or by equation (52) (thin dotted green line in (b)) for a lower
magnetic field range than in figure 5. We also plot dσ̃xy/dB(1) in
equation (46) for comparison (dotted–dashed blue line in (b)). The
traces are separately plotted in (a) and/or (b) for clarity.

to perform the numerical differentiation with respect to B
reliably. The slow sweep rates are also favorable in avoiding
the hysteresis in the superconducting magnet that obscures the
exact value of the magnetic field felt by the sample. The
longitudinal and the Hall resistances measured in our Hall bar
sample are translated to resistivities ρxx and ρxy by using the
geometrical factors of the Hall bar. Then we obtained σxx and
σxy by numerically inverting the tensor, σxx = ρxx/(ρ

2
xx +ρ2

xy)

and σxy = ρxy/(ρ
2
xx +ρ2

xy). As mentioned earlier, spin splitting
can completely be neglected for B � 0.5 T. Due to the spin
degeneracy, the conductivities experimentally measured in this
magnetic field range are simply twice as large as those without
the spins; considering the spin degeneracy, the normalized
conductivities are defined here as σ̃αβ = σαβ/(2e2/h).

In figure 7, we show dσ̃xy/dB attained by the numerical
differentiation of experimentally obtained σxy , and dσ̃xy/dB
approximated by equations (52) and (53) using experimentally
acquired σxx . It can be seen by comparing figures 6 and 7
that our theory reproduces the experimentally obtained traces
remarkably well. Note that the same vertical scale is used for
the two figures. Both figures reveal that the approximation by
equation (52) progressively worsens with decreasing magnetic
field, while equation (53) remains a good approximation over
the magnetic field range shown in the figure. We want to
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Figure 7. Experimental traces to be compared with figure 6:
dσ̃xy/dB deduced by numerical differentiation of experimentally
obtained σxy (thin solid red line, plotted in both (a) and (b)), dσ̃xy/dB
approximated by equation (53) (thick dashed green line in (a)) or by
equation (52) (thin dotted green line in (b)) calculated using
experimentally obtained σxx . The rhs of equation (3) with the
experimentally obtained σxx and β = 2τm/τq is also plotted by a
dotted–dashed blue line in (b). The traces are separately plotted in (a)
and/or (b) for clarity.

emphasize that the good quantitative agreement, demonstrated
in figure 7, between dσ̃xy/dB directly deduced from σxy and
that approximated by equation (53) using σxx is achieved
without any fitting parameter. In figure 7, we also plot the
rhs of equation (3), a more conventional empirical relation.
For the coefficient β , we adopted the relation β = 2τm/τq =
2μm/μq proposed by Coleridge et al [5]. We can see that
equation (53) describes the relation between σxx and σxy much
better than equation (3). It is clear from the figure that, even
if we use β as a fitting parameter, agreement by equation (3)
cannot be improved very much.

For higher magnetic fields, spin splitting manifests itself
as the splitting of the peaks in σxx and dσxy/dB . The
peaks take place at the conditions εF = EN + g∗σμB B
(N = 0, 1, 2, . . . , σ = ±1/2, and g∗ represents the
g factor including (B-dependent) exchange enhancement),
instead of εF = EN in the spin-degenerate case, and
therefore equations (49) and (50) no longer describe the

Figure 8. Experimental traces for higher magnetic field range:
dσ̃xy/dB deduced by numerical differentiation of experimentally
obtained σxy (thin solid red line, plotted in both (a) and (b)), dσ̃xy/dB
approximated by equation (52) calculated using experimentally
obtained σxx (thick dashed green line in (a)) and the rhs of
equation (3) with the experimentally obtained σxx and β � 400
(dotted–dashed blue line in (b)). The traces are separately plotted in
(a) and/or (b) for clarity.

positions of peaks or steps between adjacent plateaus correctly.
Nevertheless, concurrent occurrence of peaks in σxx and in
dσxy/dB still allows us an attempt to see the applicability of
equation (52), as shown in figure 8. Here σ̃αβ = σαβ/(e2/h)

again since spin degeneracy is now lifted. We see that
equation (52) reproduces roughly the right order of magnitude

for the height of the peaks in dσxy/dB , although the increase
in the peak height with increasing magnetic field for 1 T
� B � 2.5 T is at obvious variance with the behavior
of dσxy/dB . The discrepancy is mainly ascribable to the
deviation of experimental peak heights in σxx from the ∝1/B
dependence inferred from equation (49). In contrast, we find
that our experimental result is well described by equation (3)

in accordance with previous studies [2–8], albeit with the
value of the parameter β � 400 roughly 20 times larger than
2τm/τq.
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6. Discussion

The relation between σxx and σxy is already implicit in
equations (18) and (19), since both of the components derive
from the same set of Green’s functions G N (ε) (N =
0, 1, 2, . . .), or from the same DOS; note that, once the
DOS is given, both imaginary and real parts of G N (ε) are
known by equation (11) and by the Kramers–Kronig relation,
respectively. We have shown in section 4 that the relation can
be explicitly written down as equation (42), or approximately
as equation (45), if we assume a simple form given by
equation (12) for the Green’s function corresponding to the
Lorentzian broadening of the Landau levels equation (8). It
might be argued that the expression equation (12) is too
crude to represent a 2DES under a magnetic field. We
expect, however, that improvement in G N (ε) does not alter the
relation equation (42) to a large extent (if we keep ourselves
within the framework of the approximate relation between the
conductivity tensor and the Green’s function represented by
equations (18) and (19)), so long as the resultant DOS does
not significantly deviate from the Lorentzian lineshape. An
important point we would like to stress is that the relation
equation (42) is inherent in the expressions of σxx and σxy

and requires no external source, e.g. the inhomogeneity in the
electron density.

In equations (18) and (19), we have neglected a number
of effects known to take place in a 2DES subjected to a
magnetic field. These include the localization, the formation
of the edge states (stripes of compressible states parallel to the
edge of the sample interleaved with incompressible regions)
and the electron–electron interaction. We have also neglected
spins altogether as mentioned in section 5. Due to the
localization in the tails of Landau level peaks, the width of
the peaks in σxx will become narrower than what is shown in
figures 2 and 4 for the high magnetic field region where overlap
between adjacent Landau level peaks can be neglected. The
electron–electron interaction will engrave additional minima
on the peaks of σxx between adjacent integral quantum Hall
states for N < 2 Landau levels via the fractional quantum
Hall effect [33], and also affect the height and shape of the
peaks for higher Landau levels through forming the (probably
incomplete) charge density wave states [34, 35]. For a
long-range impurity potential, the peaks will be altered also
by the network of compressible and incompressible stripes
formed around valleys or hills of the impurity potential [36].
Strictly speaking, therefore, our theory applies only to the low
magnetic field region where these effects are negligibly small.
This is exactly the region we have employed in the comparison
with the experimental result in figure 7. The excellent
agreement between the theory and experiment attests to the
correctness of our theory were it not for the additional effects
neglected in the theory. The slight difference in the lineshape
between theoretical (figure 6) and experimental (figure 7)
traces, with the theoretical trace showing asymmetry between
sharp maxima and rather rounded minima, is attributable to
the use of constant εF in the theory; in the experiment, εF is
expected to oscillate with magnetic field to keep the electron
density ne constant, resulting in more symmetric peaks and
dips [37].

In the higher magnetic field regime, we envisage better
agreement between theoretical and experimental results by
modifying our theory to include the effects neglected in the
present paper listed above, which is the subject of our future
study. In the high magnetic field regime, however, we are
unable to rule out the possibility that the inhomogeneity in
ne is the dominant source of the experimentally observed
relation equation (1) (or equation (3) as shown in figure 8),
as suggested by previous studies [8, 10, 11]; the effect of the
inhomogeneity is expected to gain more significance at higher
magnetic fields, since the difference in the Hall resistivity
�ρxy between two points differing in the electron density by
�ne, �ρxy � �ne B/(n2

ee), increases with B . Note that,
in realistic samples, both microscopic inhomogeneity owing
to the random distribution of the dopants and macroscopic
inhomogeneity resulting from the technical difficulties in
the molecular beam epitaxy are virtually impossible to be
completely eliminated.

7. Conclusions

We have calculated the diagonal (σxx ) and off-diagonal (σxy )
components of the conductivity tensor in the quantum Hall
system by the linear response theory, neglecting the correction
from the current vertex part. A Lorentzian lineshape with
the width � independent of the magnetic field was assumed
for the broadening of the Landau levels by the short-range
impurity potential. The corresponding simple approximation
for the Green’s function equation (12) allowed us to obtain
analytic formulae for both σxx and σxy , given by equations (35)
and (36), respectively, for kBT � εF. The formulae
asymptotically approach the semiclassical formulae at low
magnetic fields. Inspection of the formulae reveals that
dσxy/dB is proportional to Bσ 2

xx (equation (45)) at high
magnetic fields where � � h̄ωc. This comprises a
possible alternative route to explain, without resorting to
the inhomogeneity in the electron density, the well-known
empirical relation between σxx and σxy .

To account for the long-range nature of the impurity
potential in a GaAs/AlGaAs 2DES, a slight modification
was made by introducing two types of scattering times, the
quantum scattering time τq and the momentum relaxation
time τm, yielding equations (49) and (50) for σxx and
σxy , respectively. The resultant relation between the two
components, equation (53), is found to be in quantitative
agreement with the experimental result obtained in the
GaAs/AlGaAs 2DES at the magnetic field range where the spin
splitting, the localization, the formation of the edge states, the
electron–electron interaction, etc, can be neglected.

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific
Research (B) (20340101) from the Ministry of Education,
Culture, Sports, Science and Technology (MEXT) and
by the National Institutes of Natural Sciences undertaking
Forming Bases for Interdisciplinary and International Research
through Cooperation Across Fields of Study and Collaborative

10



J. Phys.: Condens. Matter 21 (2009) 345803 A Endo et al

Research Program (no. NIFS08KEIN0091). Three of
the authors (RS, NH and HN) are grateful to generous
support from The Thermal and Electric Energy Technology
Foundation, the Research Foundation for Materials Science,
and The Iketani Foundation, and to support by the Grant-
in-Aid for Exploratory Research (17654073) from MEXT.
AE acknowledges the financial support by a Grant-in-Aid for
Scientific Research (C) (18540312) from MEXT.

Appendix. Conductivity tensor in the weak magnetic
field limit

In the derivation of equations (35) and (36), we have made no
assumption on the strength of the magnetic field. Therefore the
equations should, in the low field limit, asymptotically coincide
with the well-known semiclassical expressions

σ SC
xx = σ0

1 + (ωcτ )2
(A.1)

σ SC
xy = − σ0ωcτ

1 + (ωcτ )2
= −nee

B
+ 1

ωcτ
σ SC

xx , (A.2)

with σ0 = nee2τ/m∗ = εFe2τ/(2π h̄2) or, in the normalized
forms,

σ̃ SC
xx = 2γ

1 + 4γ 2

(
XF + 1

2

)
(A.3)

σ̃ SC
xy = − 1

1 + 4γ 2

(
XF+ 1

2

)
= −

(
XF+ 1

2

)
+2γ σ̃ SC

xx . (A.4)

Since Fsinh(XF, γ ) → 1 with γ → ∞, it is ready to see
σ̃xx → σ̃ SC

xx with B → 0 in equation (35). From equations (35)
and (36), we find

σ̃xy(XF, γ ) = −IFsinh(XF, γ ) − γ Fsin(XF, γ )

+ 2γ σ̃xx (XF, γ ). (A.5)

Noting that IFsinh(XF, γ ) → (XF+1/2) and γ Fsin(XF, γ ) →
0 with γ → ∞, we can also perceive σ̃xy → σ̃ SC

xy with B → 0.
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